Last updated at May 29, 2018 by Teachoo

Transcript

Example 14 Find the direction cosines of the unit vector perpendicular to the plane .(6 3 2 ) + 1 = 0 passing through the origin. Vector equation of a plane at a distance d from the origin and unit vector to normal from origin is . = d Unit vector of = = 1 ( ) Given, equation of plane is .(6 3 2 ) + 1 = 0 .(6 3 2 ) = 1 Multiplying with 1 on both sides, .(6 3 2 ) = 1 1 . ( 6 + 3 + 2 ) = 1 So; = 6 + 3 + 2 Magnitude of = 6 2+32+22 = 36+9+4 = 49 = 7 Now, = 1 ( ) = 1 7 ( 6 + 3 + 2 ) = + + Direction cosines of unit vector perpendicular to the given plane i.e. in are , , .

Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8

Example, 9 Deleted for CBSE Board 2022 Exams

Example 10 Important Deleted for CBSE Board 2022 Exams

Example 11

Example 12 Important

Example 13 Important

Example 14 You are here

Example 15

Example 16 Important

Example 17

Example 18

Example 19 Important

Example 20 Important

Example 21 Important

Example 22 Deleted for CBSE Board 2022 Exams

Example 23 Important Deleted for CBSE Board 2022 Exams

Example 24

Example, 25 Important Deleted for CBSE Board 2022 Exams

Example 26

Example 27 Important

Example 28 Important

Example 29 Important

Example 30 Important

Chapter 11 Class 12 Three Dimensional Geometry (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.